Gli spazi vettoriali

1 Definizioni e prime proprietá.

Siano \Re il campo dei numeri reali e V un insieme non vuoto in cui sono definite le seguenti operazioni:

$$+ : V \times V \to V$$

$$\cdot : \Re \times V \to V.$$

Diremo che $(V, +, \cdot)$ é uno spazio vettoriale sul campo dei reali se valgono le seguenti:

- 1) (V, +) é un gruppo commutativo, cioé
- i) $(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$, per ogni $v_1, v_2, v_3 \in V$;
- ii) esiste $e \in V$ tale che v + e = e + v = v, per ogni $v \in V$;
- iii) per ogni $v \in V$, esiste $w \in V$, tale che v + w = w + v = e;
- iv) per ogni $v_1, v_2 \in V, v_1 + v_2 = v_2 + v_1$.
- 2) (a+b)v = av + bv, per ogni $a, b \in \Re$, $v \in V$.
- 3) $a(v_1 + v_2) = av_1 + av_2$, per ogni $a \in \Re$, $v_1, v_2 \in V$.
- 4) a(bv) = (ab)v = (ba)v = b(av), per ogni $a, b \in \Re$, $v \in V$.
- 5) $1_{\Re} \cdot v = v$, per ogni $v \in V$.

Chiameremo vettori gli elementi di uno spazio vettoriale e scalari gli elementi del campo \Re .

Esempio 1.1 L'insieme delle matrici $M_{mn}(\Re)$ é uno spazio vettoriale su \Re , rispetto alle operazioni di somma tra matrici e prodotto per uno scalare.

Esempio 1.2 L'insieme dei vettori geometrici in \Re^3 (o in \Re^2) é uno spazio vettoriale su \Re , rispetto alle operazioni di somma tra vettori e prodotto per uno scalare.

Esempio 1.3 \Re é uno spazio vettoriale su se stesso.

Esempio 1.4 L'insieme dei polinomi di grado minore o uguale ad un fissato n,

$$\Re[X] = \{a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n \quad a_0, \dots, a_n \in \Re\}$$

a coefficienti reali, é uno spazio vettoriale su \Re , rispetto alle operazioni di somma tra polinomi e di prodotto di un polinomio per uno scalare.

Esempio 1.5 Sia

$$\Re^n = \{(x_1, x_2, ..., x_n), /x_1, x_2, x_3, ..., x_n \in \Re\}.$$

Definiamo le seguenti operazioni

$$(x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n)$$

 $\alpha(x_1, ..., x_n) = (\alpha x_1, ..., \alpha x_n).$

Allora \Re^n é uno spazio vettoriale sul campo dei reali. Ogni vettore é una n-upla del tipo $(x_1, ..., x_n)$.

Sia $W\subseteq V$, sottoinsieme dello spazio vettoriale V. Diremo che W é un sottospazio vettoriale di V, se é uno spazio vettoriale rispetto alle operazioni definite in V, sul medesimo campo dei reali. Da tale definizione deriva che, condizione necessaria e sufficiente affinché W sia sottospazio di V é che valgano le due seguenti :

$$w_1 + w_2 \in W$$
$$aw \in W$$

per ogni $a \in \Re$, $w, w_1, w_2 \in W$, e queste si possono compattare nell'unica condizione

$$aw_1 + bw_2 \in W$$

per ogni $a, b \in \Re, w_1, w_2 \in W$.

Esempio 1.6 $W = \{ \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix} \quad x, y \in \Re \}$ é un sottospazio dello spazio vettoriale delle matrici quadrate di ordine 2 su \Re , $M_2(\Re)$.

Esempio 1.7 $W = \{(x, 0, z) \mid x, z \in \Re\}$ é un sottospazio vettoriale di \Re^3 .

Esempio 1.8 \Re é un sottospazio banale di se stesso.

Esempio 1.9 $W = \{a_0 + a_1x^1 + a_2x^2 + ... + a_mx^m, a_0, ..., a_m \in \Re\}$, insieme dei polinomi di grado minore o uguale a m, con $m \le n$, \acute{e} sottospazio vettoriale di $V = \{a_0 + a_1x^1 + a_2x^2 + ... + a_nx^n, a_0, ..., a_n \in \Re\}$.

2 Intersezione, unione e somma di sottospazi.

Siano U,Wsottospazi dello spazio vettoriale V. Consideriamo l'intersezione di U e W

$$U \cap W = \{ v \in V : v \in U \text{ e } v \in W \}$$

esso é ancora un sottospazio di V.

Esempio 2.1 Siano $U = \{(x, y, 0), x, y \in \Re\}$ e $W = \{(x, 0, z), x, z \in \Re\}$ sottospazi di \Re^3 . Allora un generico vettore che appartenga ad entrambi é dato dalle componenti (x, 0, 0), quindi scriveremo

$$U \cap W = \{ v \in V : v = (x, 0, 0), x \in \Re \}.$$

Esempio 2.2 Siano $U = \{(x, y, 0), x, y \in \Re\}$ e $W = \{(x, x, x), x \in \Re\}$ sottospazi di \Re^3 . Allora l'unico vettore che appartenga ad entrambi é dato dalle componenti (0, 0, 0), quindi scriveremo

$$U \cap W = \{(0,0,0)\}.$$

Al contrario definiamo l'unione di dei due sottospazi U e W

$$U \cup W = \{v \in V : v \in U \text{ oppure } v \in W\}.$$

non é detto che tale unione sia un sottospazio di V, e per dimostrarlo portiamo il seguente controesempio: consideriamo

$$U = \{(x,0), \quad x \in \Re\}$$

$$W = \{(0, y), \quad y \in \Re\}$$

sottospazi di \Re^2 . Consideriamo il vettore $(1,0)\in U$ ed il vettore $(0,1)\in W$, ovviamente entrambi appartengono a $U\cup W$ ma

$$(1,0) + (0,1) = (1,1) \notin U \cup W.$$

Definiamo ora il seguente sottoinsieme dello spazio vettoriale V:

$$U + W = \{ v \in V : v = u + w, u \in U \text{ e } w \in W \}.$$

Esso é un sottospazio di V, detto somma di U e W, piú precisamente é il piú piccolo sottospazio di V contenente $U \cup W$.

Diremo che U+W é somma diretta se $U\cap W=\{0\}$, il solo vettore nullo.

Esempio 2.3 Siano $U = \{(x, y, 0), x, y \in \Re\}$ $e W = \{(x, 0, z), x, z \in \Re\}$ sottospazi di \Re^3 . Allora

$$U + W = \{(x, y, z), x, y, z \in \Re\} = \Re^3$$

inoltre $U \cap W = \{(x,0,0)\}$, quindi la somma non é diretta.

Esempio 2.4 Siano $U = \{(x, y, 0), x, y \in \Re\}$ $e W = \{(z, z, z), z \in \Re\}$ sottospazi di \Re^3 . Allora

$$U + W = \{(x + z, y + z, z), x, y, z \in \Re\} = \Re^3$$

inoltre $U \cap W = \{(0,0,0)\}$, quindi la somma é diretta.

Esempio 2.5 Siano $U = \{(x, 0, z), x, z \in \Re\}$ $e W = \{(y, 0, y), y \in \Re\}$ sottospazi di \Re^3 . Allora

$$U + W = \{(x + y, 0, y + z), x, y, z \in \Re\}$$

inoltre $U \cap W = \{(x,0,x)\}$, quindi la somma non é diretta.

Proposizione 2.1 Siano U e W sottospazi vettoriali dello spazio V. La loro somma é diretta se e solo se ogni vettore di essa si puó esprimere in modo unico come somma di un vettore di U e di uno di W.

Ricordiamo che una combinazione lineare di vettori $\{v_1,..,v_n\}$ di V é una scrittura del tipo

$$a_1v_1 + a_2v_2 + \dots + a_nv_n$$

per qualsiasi $a_1, ..., a_n$ scalari in \Re .

Sia $S \subseteq V$, un sottoinsieme dello spazio V. Definiamo $Span(S) = \langle S \rangle$, e lo chiamiamo sottospazio generato da S, il sottospazio di V composto da tutte le possibili combinazioni lineari di vettori di S e scalari in \Re .

Esempio 2.6 Sia $V = \Re^3$, $S = \{(1,0,0), (0,1,0)\}$. Allora $Span(S) = \{(x,y,0), x,y \in \Re\}$.

Definizione. Siano $v_1,..,v_n$ vettori in V. Diremo che $v_1,..,v_n$ sono linearmente dipendenti se esistono $a_1,..,a_n \in \Re$, non tutti nulli tali che $a_1v_1 + a_2v_2 + ... + a_nv_n = 0$.

Al contrario sono detti linearmente indipendenti se $a_1v_1+a_2v_2+..+a_nv_n=0$ implica che $a_1=a_2=...=a_n=0$.

Esempio 2.7 $v_1 = (-1, 2, 3), v_2 = (0, -1, 0), v_3 = (1, 0, 1)$ vettori di \Re^3 sono linearmente indipendenti.

Esempio 2.8 $v_1 = (1, 2, 1, 0), v_2 = (1, -1, 0, 1), v_3 = (-1, 2, -1, 0), v_4 = (-1, 1, 0, -1), v_5 = (1, 1, 0, 1)$ vettori di \Re^4 sono linearmente dipendenti.

Esempio 2.9 $v_1 = (1, 2, 0), v_2 = (0, 1, a), v_3 = (1, a, -1)$ vettori di \Re^3 , con a parametro reale, sono indipendenti per $a \neq 1$ e sono dipendenti per a = 1.

3 Basi e dimensione di uno spazio vettoriale.

Sia V uno spazio vettoriale su \Re . Un insieme B di vettori é detta base di V se:

- 1) i vettori di B sono linearmente indipendenti;
- 2) Span(B) = V.

Esempio 3.1 Se $V = \Re$, allora per ogni $a \in \Re$, $B = \{a\}$.

Esempio 3.2 Sia $V = \{ \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}, x_1, x_2, x_3, x_4 \in \Re \}$. Allora una base per V é data da

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

Esempio 3.3 Sia $V = \Re^3$, allora una base é data da

$$B = \{(1,0,0), (0,1,0), (0,0,1)\}$$

Esempio 3.4 Sia

$$V = \Re[X] = \{a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n \mid a_0, \dots, a_n \in \Re\}$$

allora una base é data da

$$B = \{1, x, x^2, x^3, ..., x^n\}$$

Teorema 3.1 Sia V uno spazio vettoriale e $B = \{e_1, e_2, ..., e_n\}$ una sua base. Siano $v_1, v_2, ..., v_r$ r vettori linearmente indipendenti di V, con $r \le n$. Allora esistono n-r vettori $e_{j_1}, e_{j_2}, ..., e_{j_{n-r}}$ di B tali che l'insieme $B' = \{v_1, v_2, ..., v_r, e_{j_1}, e_{j_2}, ..., e_{j_{n-r}}\}$ costituisca una base per V.

Teorema 3.2 Due distinte basi di uno spazio vettoriale contengono lo stesso numero di elementi.

Definiamo dimensione di uno spazio vettoriale V, e la indichiamo con dim(V), il numero di elementi di una qualsiasi base di V.

Esempio 3.5

Sia

$$W = \{(x_1, x_2, x_3, x_4) \in \Re^4 \mid x_1 - x_4 = 0, x_2 + x_3 = 0\}.$$

Il generico vettore di W é $(x_1, x_2, -x_2, x_1)$, quindi

$$dim(W) = 2$$
 e $W = <(1,0,0,1), (0,1,-1,0) > .$

Esempio 3.6

Sia

$$W = \{(x_1, x_2, x_3, x_4) \in \Re^4 \mid x_4 - x_2 + x_3 = 0\}.$$

Il generico vettore di W é $(x_1, x_2, x_3, x_2 - x_3)$, quindi

$$dim(W) = 3$$
 e $W = <(1, 0, 0, 0), (0, 1, 0, 1), (0, 0, 1, -1) > .$

Supponiamo ora che lo spazio vettoriale V abbia dimensione n, indichiamo con $B = \{e_1, ..., e_n\}$ una sua base. Diciamo componenti di un vettore $v \in V$ rispetto alla base B, gli scalari $a_1, ..., a_n$ tali che $v = a_1e_1 + a_2e_2 + ... + a_ne_n$.

Esempio 3.7 Sia $V = \Re^2$ e consideriamo due distinte basi di V:

$$B_1 = \{(1,0), (0,1)\}$$

$$B_2 = \{(1, -2), (4, 1)\}.$$

Sia $v \in V$ un vettore che abbia componenti (0, -1) rispetto alla base B_1 , cioé v = (0)(1, 0) + (-1)(0, 1) = (0, -1). Calcoliamo le sue componenti (a_1, a_2) rispetto alla base B_2 :

$$v = a_1(1, -2) + a_2(4, 1)$$

 $cio\acute{e}$

$$(0,-1) = (a_1 + 4a_2, -2a_1 + a_2)$$

da cui $a_1 = \frac{4}{9} e a_2 = -\frac{1}{9}$.

4 Formula di Grassmann.

Siano A, B sottospazi vettoriali dello spazio V. Vogliamo considerare ora la relazione che intercorre tra le dimensioni di A, B, A + B e $A \cap B$. Vale la seguente (formula di Grassmann):

Proposizione 4.1 $dim(A + B) = dim(A) + dim(B) - dim(A \cap B)$.

Si noti che nel caso A+B sia una somma diretta, la formula di Grassmann si riduce al più semplice caso dim(A+B) = dim(A) + dim(B), poiché $A \cap B = \{0\}$, quindi $dim(A \cap B) = 0$ (in tale caso si indica $A + B = A \oplus B$).

Proposizione 4.2 Siano A e B sottospazi vettoriali dello spazio V, e siano C_A e C_B rispettivamente una base di A ed una di B. Allora l'unione dei vettori delle due basi, cioé $C_A \cup C_B$, costituisce un insieme di generatori per il sottospazio A+B. Inoltre i vettori di $C_A \cup C_B$ che sono tra loro linearmente indipendenti costituiscono una base per A+B.

Esempio 4.1 Siano $V = \Re^4$,

$$A = \{(x, y, z, t) \in \Re^4, y = 0, 2z - t = 0\}$$

$$B = \{(x, y, z, t) \in \Re^4, \quad x - t = 0, y + z = 0\}$$

 $e \ calcoliamo \ dim(A+B).$

Il primo passo é quello di calcolare basi e dimensioni di A e B. Il generico vettore di A si esprime (x,0,z,2z), al variare di $x,z\in\Re$. Allora $\dim(A)=2$ ed una sua base é la seguente

Il generico vettore di B si esprime (x, y, -y, x), al variare di $x, y \in \Re$. Allora dim(B) = 2 ed una sua base é

$$(1,0,0,1),(0,1,-1,0).$$

Quindi se $v \in A \cap B$, esso deve essere esprimibile contemporaneamente in due modi, cioé

$$v = (a, 0, b, 2b) = (c, d, -d, c)$$
 con $a, b, c, d \in \Re$.

Uquagliando le due quaterne si ottiene

$$a = b = c = d = 0$$

che significa $A \cap B = \{0\}$ e $dim(A \cap B) = 0$, da cui

$$dim(A + B) = dim(A) + dim(B) - dim(A \cap B) = 2 + 2 - 0 = 4.$$

Concludiamo allora che $A + B = \Re^4$, come somma diretta.

Esempio 4.2 Siano $V = \Re^3$,

$$A = \{(a+b, b, a), \quad a, b \in \Re\}$$

$$B = \{(x, y, z), \quad x - y = 0\}.$$

 $Si\ ha\ che\ dim(A) = 2\ ed\ una\ sua\ base\ \'e\ data\ da$

Inoltre il generico vettore di B si esprime (x, x, z), quindi dim(B) = 2 ed una sua base é

Quindi se $v \in A \cap B$, esso deve essere esprimibile contemporaneamente in due modi, cioé

$$v = (a + b, b, a) = (c, c, d)$$
 con $a, b, c, d \in \Re$.

Uquaqliando le due terne si ottiene

$$a=d=0$$
 e $b=c$ da cui $v=(b,b,0).$

Ció vuol dire che $dim(A \cap B) = 1$ ed una sua base é data dal vettore (1, 1, 0). Applicando la formula di Grassmann otteniamo:

$$dim(A + B) = 2 + 2 - 1 = 3$$

quindi $A + B = \Re^3$ ma non come somma diretta.

Esempio 4.3 Siano $U = <(0,1,1), (2,0,1) > e W = <(1,1,2) > sottospazi di <math>\Re^3$. Determiniamo dim(U+W).

Il generico vettore $v \in U \cap W$ si deve esprimere nei due seguenti modi

$$v = a(0, 1, 1) + b(2, 0, 1) = (2b, a, a + b) \in U$$

$$v = c(1, 1, 2) = (c, c, 2c) \in W.$$

Uguagliando le due terne otteniamo a=b=c=0, cioé $U\cap W=\{0\}$, quindi in base alla formula di Grassmann $\dim(U+W)=2+1-0=3$, e $U+W=\Re^3$ come somma diretta.

Esempio 4.4 Siano

$$A = <(2,0,0,1),(0,0,-2,0),(0,0,1,-1)>$$

$$B = <(0, 1, 0, 0), (1, 1, 0, 0)>$$

sottospazi di \Re^4 . Un generico vettore $v \in A \cap B$ si esprime nei due seguenti modi

$$v = a(2,0,0,1) + b(0,0,-2,0) + c(0,0,1,-1) = (2a,0,-2b+c,a-c) \in A$$
$$v = d(0,1,0,0) + e(1,1,0,0) = (e,d+e,0,0) \in B.$$

Uguagliando le due quaterne si ottiene

$$a = 2b = c = -\frac{d}{2} = \frac{e}{2}$$

quindi v = (e, 0, 0, 0), al variare di $e \in \Re$. Per cui $dim(A \cap B) = 1$ e dim(A + B) = 3 + 2 - 1 = 4, cioé $A + B = \Re^4$, ma non come somma diretta.

Esempio 4.5 Siano

$$A = <(2, -1, 0, 1), (1, 3, 1, -1), (0, 1, -1, -1) >$$

 $B = <(2, 0, 1, 0), (1, 2, 2, 0) >$

sottospazi di \Re^4 . Determiniamo dim(A+B).

Un generico vettore $v \in A \cap B$ si esprime nei due seguenti modi

$$v = a(2, -1, 0, 1) + b(1, 3, 1, -1) + c(0, 1, -1, -1) = (2a+b, -a+3b+c, b-c, a-b-c) \in A$$
$$v = d(2, 0, 1, 0) + e(1, 2, 2, 0) = (2d + e, 2e, d + 2e, 0) \in B.$$

Uguagliando le due quaterne si ottiene

$$a = d = 0$$
 $b = -c = e$

quindi v=(e,2e,2e,0), al variare di $e\in\Re$. Per cui $\dim(A\cap B)=1$ e $\dim(A+B)=3+2-1=4$, cioé $A+B=\Re^4$, ma non come somma diretta.

5 Cambiamento di base in uno spazio vettoriale.

Sia V uno spazio vettoriale di dimensione n sul campo \Re e siano $B = \{e_1, e_2, ..., e_n\}$ e $B' = \{e'_1, e'_2, ..., e'_n\}$ due distinte basi di V. Per ogni vettore $v \in V$ avremo:

$$v = x_1e_1 + x_2e_2 + ... + x_ne_n \quad x_1, ..., x_n \in \Re$$

$$v = x_1'e_1' + x_2'e_2' + \dots + x_n'e_n' \quad x_1', \dots, x_n' \in \Re.$$

Indichiamo allora $X = [x_1, ..., x_n]^T$ il vettore contenente le componenti di v rispetto alla base $B \in X' = [x'_1, ..., x'_n]^T$ quello contenente le componenti di v rispetto alla base B'.

In particolare anche i vettori $e_1, ..., e_n$ possono esprimersi come combinazione dei vettori della base B':

$$\begin{cases} e_1 = a_{11}e'_1 + a_{21}e'_2 + \dots + a_{n1}e'_n \\ e_2 = a_{12}e'_1 + a_{22}e'_2 + \dots + a_{n2}e'_n \\ \dots \\ e_n = a_{1n}e'_1 + a_{2n}e'_2 + \dots + a_{nn}e'_n \end{cases}$$

Da queste otteniamo:

$$v = x_1 e_1 + x_2 e_2 + \dots + x_n e_n = x_1 (a_{11} e'_1 + a_{21} e'_2 + \dots + a_{n1} e'_n) + x_2 (a_{12} e'_1 + a_{22} e'_2 + \dots + a_{n2} e'_n) + \dots + x_n (a_{1n} e'_1 + a_{2n} e'_2 + \dots + a_{nn} e'_n) = e'_1 (a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n) + e'_2 (a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n) + \dots + e'_n (a_{n1} x_1 + a_{n2} x_2 + \dots + a_{nn} x_n)$$

che deve essere uguale a $v = x_1'e_1' + x_2'e_2' + ... + x_n'e_n'$, cioé

$$\begin{cases} x'_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ x'_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \dots \\ x'_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \end{cases}.$$

Indichiamo con A la matrice dei coefficienti di queto sistema lineare, $A = [a_{ij}]$, quindi possiamo riscrivere il sistema nel seguente modo:

$$X' = A \cdot X$$

che costituiscono le formule di passaggio dalle componenti di un vettore in base B a quelle del medesimo vettore in base B'.

La matrice A é detta matrice del cambiamento di base ed é costruita come segue:

- nella prima colonna vi sono le componenti del vettore e_1 rispetto alla base B';
- nella seconnda colonna vi sono le componenti del vettore e_2 rispetto alla base B';
- In generale, nella colonna j vi sono le componenti del vettore e_j della base B, calcolate rispetto alla base B'.

Poiché gli n vettori di una base sono sempre linearmente indipendenti, il sistema sopra citato ha rango massimo, cioé n, quindi la matrice A é invertibile, da cui otteniamo le formule inverse per il cambiamento di base:

$$X = A^{-1} \cdot X'$$

che costituiscono le formule di passaggio dalle componenti di un vettore in base B' a quelle del medesimo vettore in base B.

La matrice A^{-1} é costruita come segue:

- nella prima colonna vi sono le componenti del vettore e_1^\prime rispetto alla base B;
- nella seconnda colonna vi sono le componenti del vettore e_2' rispetto alla base B:
- In generale, nella colonna j vi sono le componenti del vettore e'_i della base B', calcolate rispetto alla base B.

Esempio 5.1

Siano $V = \Re^2$ e $B = \{e_1 = (1, 1), e_2 = (0, 1)\}, B' = \{e'_1 = (1, 0), e'_2 = (2, 1)\}$ due basi di V. Determiniamo le formule di cambiamento di base in entrambi i versi.

Calcoliamo le componenti dei vettori della prima base rispetto alla seconda.

Le componenti di $e_1 = (1,1)$ rispetto a B' sono $(e_1)_{B'} = (-1,1)$ infatti

$$(1,1) = (-1)(1,0) + (1)(2,1)$$

analogamente le componenti di $e_2 = (0,1)$ rispetto a B' sono $(e_2)_{B'} = (-2,1)$. Per cui, la matrice $A = \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}$ é quella che determina il passaggio balla base B a quella B', cioé

$$\left[\begin{array}{c} x_1' \\ x_2' \end{array}\right] = \left[\begin{array}{cc} -1 & -2 \\ 1 & 1 \end{array}\right] \cdot \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]$$

e le formule di passaggio sono

$$\begin{cases} x_1' = -x_1 - 2x_2 \\ x_2' = x_1 + x_2 \end{cases}.$$

Le formule inverse sono date da

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} \cdot \begin{bmatrix} x_1' \\ x_2' \end{bmatrix}$$

$$\begin{cases} x_1 = x_1' + 2x_2' \\ x_2 = -x_1' - x_2' \end{cases}$$

in cui la matrice di passaggio é $A^{-1} = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}$. Per esempio consideriamo il vettore $v \in V$ che abbia componenti $X = (x_1, x_2) = (2, -3)$ rispetto alla base B. Determiniamo le sue componenti $X' = (x'_1, x'_2)$ rispetto alla base B':

$$\begin{cases} x_1' = -2 + 6 = 4 \\ x_2' = 2 - 3 = -1 \end{cases}.$$

Esempio 5.2

Siano $V = \Re^3$, $B = \{(1, 1, 0), (1, 0, 1), (2, 0, 1)\}$ e $B' = \{(0, 1, 1), (2, -1, 0), (1, 0, 2)\}$ due basi di V. Determiniamo le formule di cambiamento di base.

Calcoliamo le componenti dei vettori della prima base B rispetto alla seconda B':

$$(1,1,0) \to (2,1,-1)_{B'}$$

 $(1,0,1) \to (\frac{1}{3},\frac{1}{3},\frac{1}{3})_{B'}$
 $(2,0,1) \to (1,1,0)_{B'}$

per cui

$$\begin{bmatrix} x'_1 \\ x'_2 \\ x'_3 \end{bmatrix} = \begin{bmatrix} 2 & \frac{1}{3} & 1 \\ 1 & \frac{1}{3} & 1 \\ -1 & \frac{1}{3} & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
$$\begin{cases} x'_1 = 2x_1 + \frac{1}{3}x_2 + x_3 \\ x'_2 = x_1 + \frac{1}{3}x_2 + x_3 \\ x'_3 = -x_1 + \frac{1}{3}x_2 \end{cases}.$$

Esempio 5.3

Siano $V=\Re^3$ e $B=\{e_1,e_2,e_3\},\,B'=\{e_1',e_2',e_3'\}$ due basi di V tali che

$$\begin{cases} e'_1 = e_1 + 3e_2 + 2e_3 \\ e'_2 = e_1 + e_3 \\ e'_3 = e_2 \end{cases}.$$

In tale caso le formule di passaggio dalla base B' alla base B sono

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix}$$

e calcolando l'inversa della matrice che compare nel sistema precedente:

$$\begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ 2 & 0 & -1 \\ 3 & 1 & -3 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Esempio 5.4

Siano $V = \Re^3$, $B = \{(1, 1, 0), (1, 0, 1), (2, 0, 1)\}$ e $B' = \{(1, 1, 1), (0, 0, 1), (1, 0, 2)\}$ due basi di V. Sia $v \in V$ un vettore di componenti (1, 1, 2) rispetto alla base B. Indichiamo (a, b, c) le componenti di v rispetto alla base B'. Per determinare (a, b, c) applichiamo ora esattamente la definizione di componente:

$$(1)(1,1,0) + (1)(1,0,1) + (2)(2,0,1) = a(1,1,1) + b(0,0,1) + c(1,0,2)$$

cioé

$$(6,1,3) = (a+c, a, a+b+2c)$$

da cui a = 1, b = -8, c = 5.

6 Esercizi.

Esercizio 6.1 Siano $U = \{(x, y, 0); x, y \in \Re\}, V = \{(x, 0, z); x, z \in \Re\}$ e $W = \{(x, x, x); x \in \Re\}$ sottospazi di \Re^3 . Determinare i sottospazi $U \cap V$, $U \cap W$, $V \cap W$.

Esercizio 6.2 Siano $U = \{(x, y, 0); x, y \in \Re\}, V = \{(x, 0, z); x, z \in \Re\}$ e $W = \{(x, x, x); x \in \Re\}$ sottospazi di \Re^3 . Determinare i sottospazi U + V, U + W, V + W.

Esercizio 6.3 Siano $v_1 = (-1, 2, 3)$, $v_2 = (0, -1, 0)$, $v_3 = (1, 0, 1)$ vettori di \Re^3 . Determinare la dimensione del sottospazio generato da v_1, v_2, v_3 .

Esercizio 6.4 Ripetere l'esercizio precedente in \Re^4 con i vettori $v_1 = (1, 2, 1, 0)$, $v_2 = (1, -1, 0, 1)$, $v_3 = (-1, 2, -1, 0)$, $v_4 = (-1, 1, 0, -1)$, $v_5 = (1, 1, 0, 1)$.

Esercizio 6.5 Determinare per quali valori di $\alpha \in \Re$ i seguenti vettori formano una base di \Re^3 : $v_1 = (1, 2, 0), v_2 = (0, 1, \alpha), (1, \alpha, -1).$

Esercizio 6.6 Siano $v_1 = (1, 2, 0, 0)$, $v_2 = (3, 1, 0, 1)$ vettori indipendenti in \Re^4 . Determinare due vettori che uniti ai precedenti li completino ad una base di \Re^4 .

Esercizio 6.7 Siano $B_1 = \{(1,0),(0,1)\}$ e $B_2 = \{(1,-2),(4,1)\}$ due basi di \Re^2 e v un vettore di componenti (0,-1) rispetto a B_1 . Determinare le componenti di v rispetto alla base B_2 .

Esercizio 6.8 Siano $U = \{(x, y, z, t) \in \Re^4; y = 0, 2z - t = 0\}$ e $V = \{(x, y, z, t) \in \Re^4; x - t = 0, y + z = 0\}$. Determinare una base per $U \cap V$ ed una per U + V.

Esercizio 6.9 Siano $U = \{(h+k,k,h); h,k \in \Re\}, V = \{(x,y,z); x-y=0\}$ sottospazi di \Re^3 . Determinare una base per $U \cap V$ ed una per U + V.

Esercizio 6.10 Siano $B_1 = \{(1,1),(0,1)\}\ e\ B_2 = \{(1,0),(2,1)\}\ due\ basi\ di\ \Re^2\ e\ v\ un\ vettore\ di\ componenti\ (1,1)\ rispetto\ a\ B_1$. Determinare le componenti di v rispetto alla base B_2 .

Esercizio 6.11 Siano

$$B_1 = \{(1,1,0), (1,0,1), (2,0,1)\}$$
 e $B_2 = \{(0,1,1), (2,-1,0), (1,0,0)\}$

due basi di \Re^3 e v un vettore di componenti (1,2,3) rispetto a B_1 . Determinare le componenti di v rispetto alla base B_2 .

Esercizio 6.12 Siano $B_1 = \{e_1, e_2, e_3\}$ e $B_2 = \{e'_1, e'_2 e'_3\}$ due basi di \Re^3 e v un vettore di componenti (1, 2, 3) rispetto a B_1 . Determinare le componenti di v rispetto alla base B_2 sapendo che valgono le seguenti relazioni tra i vettori delle due basi:

$$e'_1 = e_1 + 3e_2 + 2e_3, \quad e'_2 = e_1 + e_3, \quad e'_3 = e_2.$$

Esercizio 6.13 Siano

$$B_1 = \{(1,0,0), (0,1,0), (0,0,1)\}$$
 e $B_2 = \{(1,4,0), (1,5,0), (0,0,-1)\}$

due basi di \Re^3 e v un vettore di componenti (-1,0,5) rispetto a B_1 . Determinare le componenti di v rispetto alla base B_2 .

Esercizio 6.14 Determinare la dimensione e la base del sottospazio: $W = \{(x, y, z, t) \in \Re^4; 2x - t = 0, y + 3z = 0\}.$

Esercizio 6.15 Determinare la dimensione e la base del sottospazio: $W = \{(x, y, z, t) \in \Re^4; 2x - t + 2z = 0\}.$

Esercizio 6.16 Determinare la dimensione e la base del sottospazio: $W = \{(x, y, z, t) \in \Re^4; x - y = 0, y + 3z + t = 0\}.$

Esercizio 6.17 Siano $U = \{(0,1,1), (2,0,1)\} > e \ V = \{(1,1,2)\} > sottospazi di \Re^3$. Determinare la dimensione di U + V.

Esercizio 6.18 Siano $U = <\{(2,0,0,1), (0,0,-2,0), (0,0,1,-1)\} > eV = <\{(0,1,0,0), (1,1,0,0)\} > sottospazi di <math>\Re^4$. Determinare la dimensione di U+V.

Esercizio 6.19 Determinare la dimensione della somma dei sottospazi

$$A = < \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} >$$

$$B = < \begin{bmatrix} 2 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix} >.$$